

Welcome to Datarade’s documentation!

The source repository is located here [https://github.com/fivestack/datarade].

Indices and tables

	Index

	Module Index

	Search Page

API

These services allow a user to interact with datasets stored in a git-compliant source control repository. This layer
should be treated as the interface to this library. In other words, breaking changes may be introduced at lower levels,
but this layer should remain relatively stable as the library matures.

	
datarade.services.get_dataset_catalog(repository, organization, platform, project=None, branch='master', username=None, password=None)[source]

	A factory function that provides a DatasetCatalog instance

The structure of the files in the dataset catalog should look like this:

repository
|
|--- catalog
 |
 |--- my_dataset
 |
 |--- config.yaml
 |--- definition.sql
 |--- my_other_dataset
 |
 |--- config.yaml
 |--- definition.sql

The repository can be hosted on Git Hub or on Azure Repos. Multiple branches can be used for managing related
dataset catalogs. For instance, you may want to maintain a uat branch and a production branch for managing
environments. Or you may want one repo for all of your catalogs, but you want to provide some organization to
your datasets.

	Parameters

	
	repository (str) – the name of the repository

	organization (str) – the name of the organization (or user for GitHub) that owns the repository

	platform (str) – that platform that hosts the repo [‘github’, ‘azure-devops’]

	project (Optional[str]) – the name of the project that contains the repository, only used for Azure Repos

	branch (Optional[str]) – the branch to use in the repository, defaults to ‘master’

	username (Optional[str]) – the username with read access to the repository, only used for Azure Repos

	password (Optional[str]) – the password with read access to the repository, only used for Azure Repos, can also be the one-time
git credentials password that bypasses MFA

Returns: a DatasetCatalog instance

	Return type

	DatasetCatalog

	
datarade.services.get_dataset_container(driver, database_name, host, port=None, schema_name=None, username=None, password=None)[source]

	A factory function that provides a DatasetContainer instance

	Parameters

	
	driver (str) – the type of database, currently only ‘mssql’ is supported

	database_name (str) – name of the database

	host (str) – the name of the server, including the instance

	port (Optional[int]) – the port that the database is listening to on the server

	schema_name (Optional[str]) – the name of the schema

	username (Optional[str]) – a user with create table and insert permissions on the schema

	password (Optional[str]) – the password for the user

Returns: a DatasetContainer instance

	Return type

	DatasetContainer

	
datarade.services.get_dataset(dataset_catalog, dataset_name)[source]

	Returns a datarade Dataset object using the identified configuration in the dataset catalog

It collects all of the required files from the dataset catalog repository, puts the contents in a configuration
dictionary, passes that dictionary up to the abstract repository for validation, and returns the resulting Dataset
instance.

	Parameters

	
	dataset_catalog (DatasetCatalog) – dataset catalog that contains the dataset

	dataset_name (str) – the name of the dataset, which is also the name of the directory containing the files in the
repository

Returns: a Dataset object

	Return type

	Dataset

	
datarade.services.write_dataset(dataset, dataset_container, username=None, password=None)[source]

	Writes the supplied dataset to the dataset container

The supplied dataset is exported using the provided credentials. If no credentials are supplied, Windows AD is
used for the account running this script. Data is written out to ~/bcp/data and logs are written out to ~/bcp/logs.
Data is then imported into the supplied dataset container using credentials in that dataset container. Again, if no
credentials were supplied, Windows AD is used. Error records are written out to ~/bcp/data and logs are written out
to ~/bcp/logs. On a successful write, the data file is deleted to avoid leaving copies of data behind on the
application machine.

	Parameters

	
	dataset (Dataset) – the dataset to be written

	dataset_container (DatasetContainer) – the database to store the dataset in

	username (Optional[str]) – a user with select/execute permissions on the source database objects

	password (Optional[str]) – the password for the user

Developer Docs

If you are using datarade as a library, you likely can stop after the API section above.
But if you’re interested in how the library works, or want o contribute to it,
please read further.

Models

This module contains all models for datarade.

	
exception datarade.models.DatasetCatalogNotSupportedException[source]

	Occurs when an invalid platform is supplied to a DatasetCatalog instance.

	
exception datarade.models.DriverNotSupportedException[source]

	Occurs when an invalid driver is supplied to a Database instance.

	
class datarade.models.Field(name, type, description=None)[source]

	Represents a column in a dataset

	Parameters

	
	name (str) – name of the field

	type (str) – field type, one of: [Boolean, Date, DateTime, Time, Float, Integer, Numeric, String, Text]

	description (Optional[str]) – non-functional, short description of the field, can include notes about
what the field is or how it’s populated

	
property sqlalchemy_column

	Converts a datarade Field object into a sqlalchemy Column object

Returns: a sqlalchemy Column object

	Return type

	Column

	
class datarade.models.Database(driver, database_name, host, port=None, schema_name=None)[source]

	Represents a database, either as a source for a Dataset, or as a target in a DatasetContainer

	Parameters

	
	driver (str) – the type of database, currently only ‘mssql’ is supported

	database_name (str) – the name of the database

	host (str) – the name of the server, including the instance

	port (Optional[int]) – the port that the database is listening to on the server

	schema_name (Optional[str]) – the name of the schema

	
sqlalchemy_metadata(username=None, password=None)[source]

	Takes credentials and returns a sqlalchemy MetaData object for this database

	Parameters

	
	username (Optional[str]) – the username for the database

	password (Optional[str]) – the password for the database

Returns: a sqlalchemy MetaData object

	Return type

	MetaData

	
bcp(username=None, password=None)[source]

	Takes credentials and returns a BCP object for this database

	Parameters

	
	username (Optional[str]) – the username for the database

	password (Optional[str]) – the password for the database

Returns: a BCP object

	Return type

	BCP

	
full_table_name(table_name)[source]

	A utility method that is needed for MS SQL Server databases which have schemas

	Parameters

	table_name (str) – the one part name of the table

Returns: the three part name of the table, if the schema is present

	Return type

	str

	
property _sqlalchemy_driver_name

	Selects the sqlalchemy package to use given the database driver

Returns: the sqlalchemy driver in ‘<database driver>+<sqlalchemy package>’ format

	Return type

	str

	
property _odbc_driver_name

	Finds the appropriate ODBC driver on the machine given the database driver

Returns: the latest SQL Server Native Client for MS SQL Server databases

	Return type

	str

	
class datarade.models.User(username)[source]

	Represents the user that should be used to access the data.

This should not store the password for obvious reasons, but can be used in conjunction with the password
that is passed to the Database object. This makes it so that the client application that’s consuming this
dataset only needs to know the password for the account, not the account or where the account needs to
be setup. It effectively turns the password into a token. This currently supports database users
(e.g. a SQL Server account). To connect as an AD account, run your client application as that account and
don’t store the user in the dataset in your dataset catalog. For backwards compatibility, this is not a
necessary attribute on a Dataset.

	Parameters

	username (str) – the username, possibly with a domain (e.g. ‘username’, ‘DOMAIN/username’)

	
class datarade.models.Dataset(name, definition, fields, description=None, database=None, user=None)[source]

	Represents a dataset as metadata

	Parameters

	
	name (str) – an identifier for the dataset that is unique within the DatasetCatalog

	definition (str) – the sql defining the dataset

	fields (List[Field]) – a list of Field objects in the dataset

	description (Optional[str]) – non-functional, short description of the dataset, can include notes about
what the dataset is or how it’s populated

	database (Optional[Database]) – a Database object that contains the data for the dataset

	user (Optional[User]) – a User object that can be used to connect to the database to access the data

	
class datarade.models.DatasetCatalog(repository, organization, platform, project=None, branch='master', username=None, password=None)[source]

	Represents a git repo that hosts datasets in a predetermined structure

This can be thought of as a place to host datasets for data pipelines. But it can also be thought of as a place to
advertise datasets to a broad audience since it only contains metadata and not the underlying data.

	Parameters

	
	repository (str) – the name of the repository

	organization (str) – the name of the organization (or user for GitHub) that owns the repository

	platform (str) – that platform that hosts the repo [‘github’, ‘azure-devops’]

	project (Optional[str]) – the name of the project that contains the repository, only used for Azure Repos

	branch (str) – the branch to use in the repository

	username (Optional[str]) – the username with read access to the repository, only used for Azure Repos

	password (Optional[str]) – the password with read access to the repository, only used for Azure Repos, can also be the one-time
git credentials password that bypasses MFA

	
_get_git_client(platform)[source]

	Configures the appropriate git client given the platform

	Parameters

	platform (str) – the source control platform, one of ‘github’ or ‘azure-devops’

Returns: the appropriate git client

	Return type

	AbstractGitClient

	
class datarade.models.DatasetContainer(database, username=None, password=None)[source]

	Represents a target data repository that stores datasets, currently a database

	Parameters

	
	database (Database) – the database to write datasets to

	username (Optional[str]) – a user with create table and insert permissions on the schema

	password (Optional[str]) – the password for the user

	
create_table(dataset)[source]

	Creates a table in the DatasetContainer with the correct attributes to store the data

	Parameters

	dataset (Dataset) – the dataset to use as a blueprint for the table

Dataset Schemas

These schemas are all part of the aggregate schema Dataset. Reading the datasets out of a dataset catalog can lead to
a lot of user input, similar to reading input data on a REST api. As such, it makes sense to apply validation to all
data entered this way.

	
class datarade.schemas.FieldSchema(*, only=None, exclude=(), many=False, context=None, load_only=(), dump_only=(), partial=False, unknown=None)[source]

	A marshmallow schema corresponding to a datarade Field object

This schema is only called indirectly as an attribute for DatasetSchema

	
class datarade.schemas.DatabaseSchema(*, only=None, exclude=(), many=False, context=None, load_only=(), dump_only=(), partial=False, unknown=None)[source]

	A marshmallow schema corresponding to a datarade Database object

This schema is only called indirectly as an attribute for DatasetSchema

	
class datarade.schemas.UserSchema(*, only=None, exclude=(), many=False, context=None, load_only=(), dump_only=(), partial=False, unknown=None)[source]

	A marshmallow schema corresponding to a datarade User object

This schema is only called indirectly as an attribute for DatasetSchema

	
class datarade.schemas.DatasetSchema(*, only=None, exclude=(), many=False, context=None, load_only=(), dump_only=(), partial=False, unknown=None)[source]

	A marshmallow schema corresponding to a datarade Dataset object

This is used to control and validate input from an end user’s DatasetCatalog. It verifies that the proper
structure was received.

Git Client

This client allows a user to access files stored in a git-compliant source control repository.
It supports publicly available repos hosted on GitHub and public or private git-compliant repos hosted on Azure Repos.

	
class datarade.git_client.AbstractGitClient[source]

	
	
abstract get_file_contents(file_path)[source]

	This returns the contents of a file in the repo.

	Parameters

	file_path (str) – the relative path to the file within the repo

Returns: the file contents as a string

	Return type

	str

	
class datarade.git_client.GitHubClient(repository, organization, branch)[source]

	This client grants access to files on a public repo hosted on GitHub. The current implementation just goes right
to the raw file to get the contents.

	Parameters

	
	repository (str) – the name of the repo (e.g. https://github.com/<organization>/<repository>)

	organization (str) – the user or organization that owns the repo (see repository example)

	branch (str) – the name of the branch to use

	
get_file_contents(file_path)[source]

	This performs a basic get on the raw contents on GitHub. It’s not ideal, but does the job.

	Parameters

	file_path (str) – the relative path to the file within the repo

Returns: the contents of the file as a string

	Return type

	str

	
class datarade.git_client.AzureReposClient(repository, organization, project, branch, username, password)[source]

	This client grants access to files on a public or private git-compliant repo hosted on Azure Repos. It uses
Microsoft’s azure-devops package, which is currently in beta for versions 5.0 and 6.0.

	Parameters

	
	repository (str) – the name of the repo (e.g. https://dev.azure.com/<organization>/<project>/_git/<repository>)

	organization (str) – the organization that owns the Azure DevOps instance (see repository example)

	project (str) – the project within the organization that contains the repo (see repository example)

	branch (str) – the name of the branch to use

	username (str) – the username for the repo

	password (str) – the password for the repo

	
static _get_client(organization, username, password)[source]

	This method configures this client to connect to Azure Repos.

	Parameters

	
	organization (str) – the organization within the Azure DevOps instance

	username (str) – the username for the organization

	password (str) – this can be a password for no MFA, or the git credentials password that overrides MFA

Returns: an instance of the azure-devops v6.0 GitClient

	Return type

	GitClient

	
get_file_contents(file_path)[source]

	This uses get_item_content() to get the file contents from Azure Repos.

	Parameters

	file_path (str) – the relative path to the file within the repo

Returns: the contents of the file as a string

	Return type

	str

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 datarade	

 	
 	
 datarade.git_client	

 	
 	
 datarade.models	

 	
 	
 datarade.schemas	

 	
 	
 datarade.services	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | S
 | U
 | W

_

 	
 	_get_client() (datarade.git_client.AzureReposClient static method)

 	_get_git_client() (datarade.models.DatasetCatalog method)

 	
 	_odbc_driver_name() (datarade.models.Database property)

 	_sqlalchemy_driver_name() (datarade.models.Database property)

A

 	
 	AbstractGitClient (class in datarade.git_client)

 	
 	AzureReposClient (class in datarade.git_client)

B

 	
 	bcp() (datarade.models.Database method)

C

 	
 	create_table() (datarade.models.DatasetContainer method)

D

 	
 	Database (class in datarade.models)

 	DatabaseSchema (class in datarade.schemas)

 	datarade.git_client (module)

 	datarade.models (module)

 	datarade.schemas (module)

 	datarade.services (module)

 	
 	Dataset (class in datarade.models)

 	DatasetCatalog (class in datarade.models)

 	DatasetCatalogNotSupportedException

 	DatasetContainer (class in datarade.models)

 	DatasetSchema (class in datarade.schemas)

 	DriverNotSupportedException

F

 	
 	Field (class in datarade.models)

 	
 	FieldSchema (class in datarade.schemas)

 	full_table_name() (datarade.models.Database method)

G

 	
 	get_dataset() (in module datarade.services)

 	get_dataset_catalog() (in module datarade.services)

 	get_dataset_container() (in module datarade.services)

 	
 	get_file_contents() (datarade.git_client.AbstractGitClient method)

 	(datarade.git_client.AzureReposClient method)

 	(datarade.git_client.GitHubClient method)

 	GitHubClient (class in datarade.git_client)

S

 	
 	sqlalchemy_column() (datarade.models.Field property)

 	
 	sqlalchemy_metadata() (datarade.models.Database method)

U

 	
 	User (class in datarade.models)

 	
 	UserSchema (class in datarade.schemas)

W

 	
 	write_dataset() (in module datarade.services)

 All modules for which code is available

	datarade.git_client

	datarade.models

	datarade.schemas

	datarade.services

 Source code for datarade.git_client

"""
This client allows a user to access files stored in a git-compliant source control repository.
It supports publicly available repos hosted on GitHub and public or private git-compliant repos hosted on Azure Repos.
"""
import abc
from typing import Generator

import requests
from azure.devops.connection import Connection
from azure.devops.v6_0.git.models import GitVersionDescriptor
from msrest.authentication import BasicAuthentication
from azure.devops.v6_0.git.git_client import GitClient as AzureReposGitClient

[docs]class AbstractGitClient(abc.ABC):

[docs] @abc.abstractmethod
 def get_file_contents(self, file_path: str) -> str:
 """
 This returns the contents of a file in the repo.

 Args:
 file_path: the relative path to the file within the repo

 Returns: the file contents as a string
 """
 raise NotImplementedError

[docs]class GitHubClient(AbstractGitClient):
 """
 This client grants access to files on a public repo hosted on GitHub. The current implementation just goes right
 to the raw file to get the contents.

 Args:
 repository: the name of the repo (e.g. https://github.com/<organization>/<repository>)
 organization: the user or organization that owns the repo (see repository example)
 branch: the name of the branch to use
 """
 def __init__(self, repository: str, organization: str, branch: str):
 self.base_url = f'https://raw.githubusercontent.com/{organization}'
 self.repository = repository
 self.branch = branch

[docs] def get_file_contents(self, file_path: str) -> str:
 """
 This performs a basic get on the raw contents on GitHub. It's not ideal, but does the job.

 Args:
 file_path: the relative path to the file within the repo

 Returns: the contents of the file as a string
 """
 url = f'{self.base_url}/{self.repository}/{self.branch}/{file_path}'
 try:
 response = requests.get(url=url)
 except Exception as e:
 print(f'File does not exist at: {url}')
 raise e
 else:
 return response.content

[docs]class AzureReposClient(AbstractGitClient):
 """
 This client grants access to files on a public or private git-compliant repo hosted on Azure Repos. It uses
 Microsoft's azure-devops package, which is currently in beta for versions 5.0 and 6.0.

 Args:
 repository: the name of the repo (e.g. https://dev.azure.com/<organization>/<project>/_git/<repository>)
 organization: the organization that owns the Azure DevOps instance (see repository example)
 project: the project within the organization that contains the repo (see repository example)
 branch: the name of the branch to use
 username: the username for the repo
 password: the password for the repo
 """
 def __init__(self, repository: str, organization: str, project: str, branch: str,
 username: str, password: str):
 self.client: 'AzureReposGitClient' = self._get_client(organization=organization, username=username,
 password=password)
 self.project = project
 self.repository = repository
 self.version_descriptor = GitVersionDescriptor(version=branch)

[docs] @staticmethod
 def _get_client(organization: str, username: str, password: str) -> 'AzureReposGitClient':
 """
 This method configures this client to connect to Azure Repos.

 Args:
 organization: the organization within the Azure DevOps instance
 username: the username for the organization
 password: this can be a password for no MFA, or the git credentials password that overrides MFA

 Returns: an instance of the azure-devops v6.0 GitClient
 """
 base_url = f'https://dev.azure.com/{organization}'
 credentials = BasicAuthentication(username=username, password=password)
 connection = Connection(base_url=base_url, creds=credentials)
 client_type = 'azure.devops.v6_0.git.git_client.GitClient'
 return connection.get_client(client_type=client_type)

[docs] def get_file_contents(self, file_path: str) -> str:
 """
 This uses get_item_content() to get the file contents from Azure Repos.

 Args:
 file_path: the relative path to the file within the repo

 Returns: the contents of the file as a string
 """
 try:
 content: 'Generator' = self.client.get_item_content(repository_id=self.repository,
 project=self.project,
 path=file_path,
 version_descriptor=self.version_descriptor,
 download=True)
 except Exception as e:
 path_to_file = f'{self.project}/{self.repository}/{self.version_descriptor.version}/{file_path}'
 print(f'File does not exist at: {path_to_file}')
 raise e
 else:
 file = ''
 for item in content:
 file += item.decode('utf-8')
 return file

 Source code for datarade.models

"""
This module contains all models for datarade.
"""
from typing import List
from urllib.parse import quote_plus

from bcp import BCP, Connection
from sqlalchemy import MetaData, create_engine, schema, types, Table

from datarade import git_client

[docs]class DatasetCatalogNotSupportedException(Exception):
 """Occurs when an invalid platform is supplied to a DatasetCatalog instance."""
 print('Supported platforms include: github, azure-devops')

[docs]class DriverNotSupportedException(Exception):
 """Occurs when an invalid driver is supplied to a Database instance."""
 print('Supported drivers include: mssql')

[docs]class Field:
 """
 Represents a column in a dataset

 Args:
 name: name of the field
 type: field type, one of: [Boolean, Date, DateTime, Time, Float, Integer, Numeric, String, Text]
 description: non-functional, short description of the field, can include notes about
 what the field is or how it's populated
 """
 def __init__(self, name: str, type: str, description: str = None):
 self.name = name
 self.type = type
 self.description = description

 @property
 def sqlalchemy_column(self) -> 'schema.Column':
 """
 Converts a datarade Field object into a sqlalchemy Column object

 Returns: a sqlalchemy Column object
 """
 type_lookup = {
 'Boolean': types.Boolean,
 'Date': types.Date,
 'DateTime': types.DateTime,
 'Time': types.Time,
 'Float': types.Float,
 'Integer': types.Integer,
 'Numeric': types.Numeric(18, 2),
 'String': types.String,
 'Text': types.Text,
 }
 try:
 return schema.Column(self.name, type_lookup[self.type], comment=self.description)
 except KeyError as e:
 print(f'Not a valid column type: {self.type}')
 raise e

[docs]class Database:
 """
 Represents a database, either as a source for a Dataset, or as a target in a DatasetContainer

 Args:
 driver: the type of database, currently only 'mssql' is supported
 database_name: the name of the database
 host: the name of the server, including the instance
 port: the port that the database is listening to on the server
 schema_name: the name of the schema
 """
 def __init__(self, driver: str, database_name: str, host: str, port: int = None, schema_name: str = None):
 self.driver = driver
 self.database_name = database_name
 self.host = host
 self.port = port
 self.schema_name = schema_name

[docs] def sqlalchemy_metadata(self, username: str = None, password: str = None) -> 'MetaData':
 """
 Takes credentials and returns a sqlalchemy MetaData object for this database

 Args:
 username: the username for the database
 password: the password for the database

 Returns: a sqlalchemy MetaData object
 """
 driver = '{' + self._odbc_driver_name + '}'
 if self.port:
 server = f'{self.host},{self.port}'
 else:
 server = self.host
 base_url = f'DRIVER={driver};SERVER={server};DATABASE={self.database_name};'
 if username and password:
 auth = f'UID={username};PWD={password}'
 else:
 auth = 'Trusted_Connection=Yes'
 url = base_url + auth
 try:
 engine = create_engine(f'{self._sqlalchemy_driver_name}:///?odbc_connect={quote_plus(url)}')
 except Exception as e:
 print(f'Unable to create an engine using these parameters: {quote_plus(url)}')
 raise e
 if self.schema_name is not None: # sqlalchemy treats schema=None and not returning schema differently
 return MetaData(bind=engine, schema=self.schema_name)
 else:
 return MetaData(bind=engine)

[docs] def bcp(self, username: str = None, password: str = None) -> 'BCP':
 """
 Takes credentials and returns a BCP object for this database

 Args:
 username: the username for the database
 password: the password for the database

 Returns: a BCP object
 """
 conn = Connection(driver=self.driver,
 host=self.host,
 port=self.port,
 username=username,
 password=password)
 return BCP(conn)

[docs] def full_table_name(self, table_name: str) -> str:
 """
 A utility method that is needed for MS SQL Server databases which have schemas

 Args:
 table_name: the one part name of the table

 Returns: the three part name of the table, if the schema is present
 """
 if self.schema_name is not None:
 return f'{self.database_name}.{self.schema_name}.{table_name}'
 else:
 return table_name

 @property
 def _sqlalchemy_driver_name(self) -> str:
 """
 Selects the sqlalchemy package to use given the database driver

 Returns: the sqlalchemy driver in '<database driver>+<sqlalchemy package>' format
 """
 if self.driver == 'mssql':
 return 'mssql+pyodbc'
 else:
 print(f'This driver is not supported: {self.driver}')
 raise DriverNotSupportedException

 @property
 def _odbc_driver_name(self) -> str:
 """
 Finds the appropriate ODBC driver on the machine given the database driver

 Returns: the latest SQL Server Native Client for MS SQL Server databases
 """
 if self.driver == 'mssql':
 import pyodbc

 installed_drivers = pyodbc.drivers()
 sql_server_native_clients = [client
 for client in installed_drivers
 if 'SQL Server Native Client' in client]
 try:
 latest_client = sorted(sql_server_native_clients)[0]
 except IndexError as e:
 print('There is no version of the SQL Server Native Client driver installed.')
 raise e
 return latest_client
 else:
 print(f'This driver is not supported: {self.driver}')
 raise DriverNotSupportedException

[docs]class User:
 """
 Represents the user that should be used to access the data.

 This should not store the password for obvious reasons, but can be used in conjunction with the password
 that is passed to the Database object. This makes it so that the client application that's consuming this
 dataset only needs to know the password for the account, not the account or where the account needs to
 be setup. It effectively turns the password into a token. This currently supports database users
 (e.g. a SQL Server account). To connect as an AD account, run your client application as that account and
 don't store the user in the dataset in your dataset catalog. For backwards compatibility, this is not a
 necessary attribute on a Dataset.

 Args:
 username: the username, possibly with a domain (e.g. 'username', 'DOMAIN/username')
 """
 def __init__(self, username: str):
 self.username = username

[docs]class Dataset:
 """
 Represents a dataset as metadata

 Args:
 name: an identifier for the dataset that is unique within the DatasetCatalog
 definition: the sql defining the dataset
 fields: a list of Field objects in the dataset
 description: non-functional, short description of the dataset, can include notes about
 what the dataset is or how it's populated
 database: a Database object that contains the data for the dataset
 user: a User object that can be used to connect to the database to access the data
 """
 def __init__(self, name: str, definition: str, fields: 'List[Field]', description: str = None,
 database: 'Database' = None, user: 'User' = None):
 self.name = name
 self.definition = definition
 self.fields = fields
 self.description = description
 self.database = database
 self.user = user

[docs]class DatasetCatalog:
 """
 Represents a git repo that hosts datasets in a predetermined structure

 This can be thought of as a place to host datasets for data pipelines. But it can also be thought of as a place to
 advertise datasets to a broad audience since it only contains metadata and not the underlying data.

 Args:
 repository: the name of the repository
 organization: the name of the organization (or user for GitHub) that owns the repository
 platform: that platform that hosts the repo ['github', 'azure-devops']
 project: the name of the project that contains the repository, only used for Azure Repos
 branch: the branch to use in the repository
 username: the username with read access to the repository, only used for Azure Repos
 password: the password with read access to the repository, only used for Azure Repos, can also be the one-time
 git credentials password that bypasses MFA
 """
 def __init__(self, repository: str, organization: str, platform: str, project: str = None, branch: str = 'master',
 username: str = None, password: str = None):
 self.repository = repository
 self.organization = organization
 self.project = project
 self.branch = branch
 self.username = username
 self.password = password
 self.git = self._get_git_client(platform=platform)

[docs] def _get_git_client(self, platform: str) -> 'git_client.AbstractGitClient':
 """
 Configures the appropriate git client given the platform

 Args:
 platform: the source control platform, one of 'github' or 'azure-devops'

 Returns: the appropriate git client
 """
 if platform == 'github':
 return git_client.GitHubClient(repository=self.repository, organization=self.organization,
 branch=self.branch)
 elif platform == 'azure-devops':
 return git_client.AzureReposClient(repository=self.repository, organization=self.organization,
 project=self.project, branch=self.branch,
 username=self.username, password=self.password)
 else:
 raise DatasetCatalogNotSupportedException

[docs]class DatasetContainer:
 """
 Represents a target data repository that stores datasets, currently a database

 Args:
 database: the database to write datasets to
 username: a user with create table and insert permissions on the schema
 password: the password for the user
 """
 def __init__(self, database: 'Database', username: str = None, password: str = None):
 self.database = database
 self.metadata = self.database.sqlalchemy_metadata(username=username, password=password)
 self.bcp = self.database.bcp(username=username, password=password)

[docs] def create_table(self, dataset: 'Dataset'):
 """
 Creates a table in the DatasetContainer with the correct attributes to store the data

 Args:
 dataset: the dataset to use as a blueprint for the table
 """
 field_args = [field.sqlalchemy_column for field in dataset.fields]
 table = Table(dataset.name, self.metadata, extend_existing=True, *field_args)
 table.drop(checkfirst=True)
 table.create()

 Source code for datarade.schemas

"""
These schemas are all part of the aggregate schema Dataset. Reading the datasets out of a dataset catalog can lead to
a lot of user input, similar to reading input data on a REST api. As such, it makes sense to apply validation to all
data entered this way.
"""
import marshmallow as ma

from datarade import models

[docs]class FieldSchema(ma.Schema):
 """
 A marshmallow schema corresponding to a datarade Field object

 This schema is only called indirectly as an attribute for DatasetSchema
 """
 name = ma.fields.Str(required=True)
 description = ma.fields.Str(required=False)
 type = ma.fields.Str(required=True)

 @ma.post_load()
 def post_load(self, data: dict, **kwargs) -> 'models.Field':
 return models.Field(**data)

[docs]class DatabaseSchema(ma.Schema):
 """
 A marshmallow schema corresponding to a datarade Database object

 This schema is only called indirectly as an attribute for DatasetSchema
 """
 driver = ma.fields.Str(required=True)
 database_name = ma.fields.Str(required=True)
 host = ma.fields.Str(required=True)
 port = ma.fields.Int(required=False)
 schema_name = ma.fields.Str(required=False)

 @ma.post_load()
 def post_load(self, data: dict, **kwargs) -> 'models.Database':
 return models.Database(**data)

[docs]class UserSchema(ma.Schema):
 """
 A marshmallow schema corresponding to a datarade User object

 This schema is only called indirectly as an attribute for DatasetSchema
 """
 username = ma.fields.Str(required=True)

 @ma.post_load()
 def post_load(self, data: dict, **kwargs) -> 'models.User':
 return models.User(**data)

[docs]class DatasetSchema(ma.Schema):
 """
 A marshmallow schema corresponding to a datarade Dataset object

 This is used to control and validate input from an end user's DatasetCatalog. It verifies that the proper
 structure was received.
 """
 name = ma.fields.Str(required=True)
 definition = ma.fields.Str(required=True)
 fields = ma.fields.Nested(FieldSchema, required=True, many=True)
 description = ma.fields.Str(required=False)
 database = ma.fields.Nested(DatabaseSchema, required=False)
 user = ma.fields.Nested(UserSchema, required=False)

 @ma.post_load()
 def post_load(self, data: dict, **kwargs) -> 'models.Dataset':
 return models.Dataset(**data)

 Source code for datarade.services

"""
These services allow a user to interact with datasets stored in a git-compliant source control repository. This layer
should be treated as the interface to this library. In other words, breaking changes may be introduced at lower levels,
but this layer should remain relatively stable as the library matures.
"""
from typing import Optional

from bcp import DataFile
import yaml

from datarade import models, schemas

[docs]def get_dataset_catalog(repository: str, organization: str, platform: str, project: str = None,
 branch: 'Optional[str]' = 'master',
 username: str = None, password: str = None) -> 'models.DatasetCatalog':
 """
 A factory function that provides a DatasetCatalog instance

 The structure of the files in the dataset catalog should look like this:

 .. code-block:: none

 repository
 |
 |--- catalog
 |
 |--- my_dataset
 |
 |--- config.yaml
 |--- definition.sql
 |--- my_other_dataset
 |
 |--- config.yaml
 |--- definition.sql

 The repository can be hosted on Git Hub or on Azure Repos. Multiple branches can be used for managing related
 dataset catalogs. For instance, you may want to maintain a uat branch and a production branch for managing
 environments. Or you may want one repo for all of your catalogs, but you want to provide some organization to
 your datasets.

 Args:
 repository: the name of the repository
 organization: the name of the organization (or user for GitHub) that owns the repository
 platform: that platform that hosts the repo ['github', 'azure-devops']
 project: the name of the project that contains the repository, only used for Azure Repos
 branch: the branch to use in the repository, defaults to 'master'
 username: the username with read access to the repository, only used for Azure Repos
 password: the password with read access to the repository, only used for Azure Repos, can also be the one-time
 git credentials password that bypasses MFA

 Returns: a DatasetCatalog instance
 """
 return models.DatasetCatalog(repository=repository, organization=organization, platform=platform,
 project=project, branch=branch, username=username, password=password)

[docs]def get_dataset_container(driver: str, database_name: str, host: str, port: int = None, schema_name: str = None,
 username: str = None, password: str = None) -> 'models.DatasetContainer':
 """
 A factory function that provides a DatasetContainer instance

 Args:
 driver: the type of database, currently only 'mssql' is supported
 database_name: name of the database
 host: the name of the server, including the instance
 port: the port that the database is listening to on the server
 schema_name: the name of the schema
 username: a user with create table and insert permissions on the schema
 password: the password for the user

 Returns: a DatasetContainer instance
 """
 database = models.Database(driver=driver, database_name=database_name, host=host, port=port,
 schema_name=schema_name)
 return models.DatasetContainer(database=database, username=username, password=password)

[docs]def get_dataset(dataset_catalog: 'models.DatasetCatalog', dataset_name: str) -> 'models.Dataset':
 """
 Returns a datarade Dataset object using the identified configuration in the dataset catalog

 It collects all of the required files from the dataset catalog repository, puts the contents in a configuration
 dictionary, passes that dictionary up to the abstract repository for validation, and returns the resulting Dataset
 instance.

 Args:
 dataset_catalog: dataset catalog that contains the dataset
 dataset_name: the name of the dataset, which is also the name of the directory containing the files in the
 repository

 Returns: a Dataset object
 """
 config_yaml = dataset_catalog.git.get_file_contents(f'catalog/{dataset_name}/config.yaml')
 definition = dataset_catalog.git.get_file_contents(f'catalog/{dataset_name}/definition.sql')
 dataset_dict = yaml.safe_load(config_yaml)
 dataset_dict['definition'] = definition
 dataset_schema = schemas.DatasetSchema()
 return dataset_schema.load(dataset_dict)

[docs]def write_dataset(dataset: 'models.Dataset', dataset_container: 'models.DatasetContainer',
 username: str = None, password: str = None):
 """
 Writes the supplied dataset to the dataset container

 The supplied dataset is exported using the provided credentials. If no credentials are supplied, Windows AD is
 used for the account running this script. Data is written out to ~/bcp/data and logs are written out to ~/bcp/logs.
 Data is then imported into the supplied dataset container using credentials in that dataset container. Again, if no
 credentials were supplied, Windows AD is used. Error records are written out to ~/bcp/data and logs are written out
 to ~/bcp/logs. On a successful write, the data file is deleted to avoid leaving copies of data behind on the
 application machine.

 Args:
 dataset: the dataset to be written
 dataset_container: the database to store the dataset in
 username: a user with select/execute permissions on the source database objects
 password: the password for the user
 """
 dataset_container.create_table(dataset=dataset)
 if username is None and dataset.user is not None:
 username = dataset.user.username
 data_file = DataFile(delimiter='|~|')
 source_bcp = dataset.database.bcp(username=username, password=password)
 source_bcp.dump(query=dataset.definition, output_file=data_file)
 dataset_container.bcp.load(input_file=data_file, table=dataset_container.database.full_table_name(dataset.name))
 data_file.file.unlink()

 nav.xhtml

 Table of Contents

 		
 Welcome to Datarade’s documentation!

_static/plus.png

_static/file.png

_static/minus.png

